Synthesis and characterization of benzylselenolate complexes of palladium(II) and platinum(II)

Sandip Dey ${ }^{\text {a }}$, Vimal K. Jain ${ }^{\text {a,*, }}$, Babu Varghese ${ }^{\text {b }}$
${ }^{\text {a }}$ Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
${ }^{\mathrm{b}}$ Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Chennai 600036, India

Received 9 May 2000; accepted 24 May 2000

Abstract

Reactions of sodium benzylselenolate with several palladium(II) and platinum(II) complexes were carried out and a variety of products isolated and characterized. Reactions of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ or $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with NaSeBz gave $\left[\mathrm{M}(\mathrm{SeBz})_{2}\right]_{n}(\mathrm{M}=\mathrm{Pd}$ or Pt ; $\left.\mathrm{Bz}=\mathrm{CH}_{2} \mathrm{Ph}\right)$ which when treated with tertiary phosphines yielded $\left[\mathrm{M}(\mathrm{SeBz})_{2}(\mathrm{~L}-\mathrm{L})\right]$. The latter can also be prepared by the reaction of $\mathrm{MCl}_{2}(\mathrm{~L}-\mathrm{L})\left(\mathrm{L}-\mathrm{L}=\mathrm{dppm}\right.$, dppe or $\left.2 \mathrm{PPh}_{3}\right)$ with NaSeBz . Treatment of $\left[\mathrm{M}_{2} \mathrm{X}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with NaSeBz in $1: 2$ molar ratio afforded complexes of the type $\left[\mathrm{M}_{2} \mathrm{X}_{2}(\mu-\mathrm{SeBz})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{M}=\mathrm{Pd}\right.$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{Cl}$ or $\mathrm{Me} ; \mathrm{PR}_{3}=\mathrm{PEt}_{3}, \mathrm{PPr}_{3}^{n}, \mathrm{PBu}_{3}^{n}, \mathrm{PMe}_{2} \mathrm{Ph}$, PMePh_{2} or $\left.\mathrm{PPh}_{3}\right)$ which existed predominantly as a cis isomer. Reaction of $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SeBz}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\right.$ gave heterobridged complexes $\left[\mathrm{M}_{2} \mathrm{Cl} 2(\mu-\mathrm{Cl})(\mu-\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}\right]$, the bridging chloride in the latter can be substituted with SBu^{t} or pz. All the complexes were characterized by elemental analysis and NMR ($\left.{ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{77} \mathrm{Se},{ }^{195} \mathrm{Pt}\right)$ spectral data. Stereochemistry of these complexes has been discussed on the basis of NMR data. The crystal structure of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SeBz}_{2}\left(\mathrm{PPr}_{3}^{r}\right)_{2}\right]\right.$ has established a cis configuration with a bent four-membered $\mathrm{Pt}_{2} \mathrm{Se}_{2}$ ring. The complex $\left[\mathrm{Pd}(\mathrm{SeBz})_{2}\right]_{n}$ on thermolysis at $630^{\circ} \mathrm{C}$ yields $\mathrm{Pd}_{17} \mathrm{Se}_{15}$. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Palladium; Platinum; Benzylselenolate; NMR; Binuclear compounds; Tertiaryphosphines

1. Introduction

The chemistry of transition metal complexes with chalcogen ligands is expanding at a rapid pace. Besides diverse structural possibilities [1], they have been used as molecular precursors for the preparation of advanced materials [2] and industrial catalysis [3]. Plat inum group chalcogenides $\mathrm{M}_{x} \mathrm{E}_{y}(\mathrm{M}=$ platinum group metal; $\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te}$) find extensive applications in catalysis [4] and materials science [5]. We have recently demonstrated that the methylallyl palladium complexes $\left[\mathrm{Pd}_{2}(\mu-\mathrm{ER})_{2}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)_{2}\right]$ on thermolysis yield $\mathrm{Pd}_{4} \mathrm{E}(\mathrm{E}=$ S or Se$) / \mathrm{Pd}_{3} \mathrm{Te}_{2}$ at moderately low temperatures $\left(140^{\circ} \mathrm{C}\right)$ [6]. Similarly $\left[\mathrm{Pd}(\mathrm{Epy})\left\{\mathrm{S}_{2} \mathrm{P}(\mathrm{OR})_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ affords $\operatorname{PdSE}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ on pyrolysis [7].

The chemistry of palladium and platinum with chalcogenolates has been dominated by molecules containing thiolate groups [1]. Complexes with heavier

[^0]chalcogens $(\mathrm{E}=\mathrm{Se}$ or Te$)$ are rare [8]. We have recently examined some chemistry of palladium and platinum complexes with SeEt [9], SePh [10], Sepy [11], and TePh [12] ligands. The increasing continued interest in selenium/tellurium containing materials $[2 \mathrm{c}, 8 \mathrm{~b}]$ and a drive to replace volatile toxic $\mathrm{Se} / \mathrm{Te}$ containing precursors (such as $\mathrm{H}_{2} \mathrm{Se}$ or $\mathrm{R}_{2} \mathrm{E}_{2}$ etc.) have motivated us to explore single source precursors. The photosensitivity and cleaner cleavage of the benzyl group in $\mathrm{Bz}_{2} \mathrm{E}_{2}$ ($\mathrm{E}=\mathrm{Se}$ or Te) [13] has attracted our attention to examine the chemistry of palladium(II) and platinum(II) with the BzSe^{-}ligand. Results of this work are reported herein.

2. Results and discussion

2.1. Mononuclear complexes

Reaction of $\mathrm{Na}_{2} \mathrm{PdCl}_{4} / \mathrm{K}_{2} \mathrm{PtCl}_{4}$ with sodium benzylselenolate, prepared by reductive cleavage of the
$\mathrm{Se}-\mathrm{Se}$ bond in $\mathrm{Bz}_{2} \mathrm{Se}_{2}$ with sodium borohydride in methanol, afforded sparingly soluble complexes of composition $\left[\mathrm{M}(\mathrm{SeBz})_{2}\right](\mathbf{1})[\mathrm{M}=\mathrm{Pd}(\mathbf{1 a})$ or $\mathrm{Pt}(\mathbf{1 b})]$. Several thiolates of composition $\left[\mathrm{M}(\mathrm{SR})_{2}\right]$ are reported as polymeric species; structures of palladium complexes $\left[\operatorname{Pd}\left(\operatorname{SPr}^{n}\right)_{2}\right]_{n}(n=6$ or 8$)$ [14] have been confirmed by X-ray diffraction. Treatment of $\mathbf{1}$ with phosphine ligands readily gave monomeric complexes $\left[\mathrm{M}(\mathrm{SeBz})_{2}(\mathrm{~L}-\right.$ $\mathrm{L})]$ (2) $\left(\mathrm{M}=\mathrm{Pt} ; \mathrm{L}-\mathrm{L}=2 \mathrm{PPh}_{3}\right)$ and (3) (Scheme 1). The latter two can be obtained readily by the reaction of $\mathrm{MCl}_{2}(\mathrm{~L}-\mathrm{L})$ with NaSeBz .

The compound 2 has been isolated as a cis product. The presence of ${ }^{4} J(\mathrm{P}-\mathrm{H})$ for the methylene protons of the SeBz group and the magnitude of ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ (2964 $\mathrm{Hz})$ indicates a cis geometry. The magnitude of ${ }^{1} J(\mathrm{Pt}-$ P) (Table 1) can be compared with cis- $[\mathrm{Pt}(-$ $\left.\mathrm{SePh})_{2}\left(\mathrm{PPh}_{3}\right)\right](2969 \mathrm{~Hz})$ while the trans isomer has a smaller ${ }^{1} J(\mathrm{Pt}-\mathrm{P})(2860 \mathrm{~Hz})$ [15]. 2 reacts with methyl iodide in benzene to yield a pale yellow solid which is characterized as trans $-\left[\mathrm{PtI}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ from analysis and NMR data.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ resonances for $\mathbf{3}$ are deshielded relative to the corresponding cis $-\mathrm{MCl}_{2}(\mathrm{~L}-\mathrm{L})$ species and the magnitude of ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ is reduced significantly indicating strong trans influence of the SeBz group trans to phosphines. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra exhibited a doublet for the CH_{2} protons of the SeBz group due to ${ }^{4} J(\mathrm{P}-\mathrm{H})$ couplings ($\sim 3 \mathrm{~Hz}$). The ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra of $\mathbf{3 b}$ and 3 c displayed a triplet at $\delta-4205\left({ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=\right.$
$2377 \mathrm{~Hz})$ and $-4917\left({ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=2853 \mathrm{~Hz}\right) \mathrm{ppm}$, respectively, due to coupling with two equivalent phosphorus nuclei. ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ data can be compared with the spectra of cis-[Pt(ER) $\left.)_{2}(\mathrm{~L}-\mathrm{L})\right](\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te} ; \mathrm{L}=$ dppm or dppe) [15b]. The ${ }^{195} \mathrm{Pt}$ resonance is shielded on substituting dppm for dppe, though the overall stereochemistry is same in the two complexes. The observed shielding may be attributed to the ring size effects.

2.2. Binuclear complexes

Treatment of $\left[\mathrm{M}_{2} \mathrm{X}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ with NaSeBz afforded benzylselenolato-bridged complexes, $\left[\mathrm{M}_{2} \mathrm{X}_{2}(\mu-\right.$ $\mathrm{SeBz})_{2}\left(\mathrm{PR}_{3}\right)_{2}$] (4) as orange (Pd) or yellow (Pt) crystalline solids (Scheme 2). The reaction of halogenbridged complexes $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right.$] with $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\mathrm{SeBz})_{2}\left(\mathrm{PR}_{3}\right)_{2}$] in refluxing dichloromethane yields heterobridged complexes $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}\right]$ (5) in quantitave yields. The bridging chloride in the latter can be substituted with pyrazolato ligand, by treatment with pyrazole in the presence of aqueous NaOH to yield $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{pz})(\mu-\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}\right](6)$ or SBu^{t} by the reaction of $\mathrm{Bu}^{t} \mathrm{SH}$ to give $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SBu}^{t}\right)(\mu-\right.$ $\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}$] (7).

The NMR spectra of these complexes (4-7) are consistent with the $\left[\mathrm{Pt}_{2} \mathrm{X}_{2}(\mu-\mathrm{Y})(\mu-\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}\right]$ arrangement which exhibits trans (A) and cis (\mathbf{B} and \mathbf{C}) isomerism as depicted below:

$$
\left(\mathrm{M}=\mathrm{Pd} \text { or } \mathrm{Pt} ; \mathrm{X}=\mathrm{Cl} \text { or } \mathrm{Me} ; \mathrm{Y}=\mathrm{SeBz}, \mathrm{Cl}, \mathrm{pz} \text { or } \mathrm{SBu}{ }^{\mathrm{t}}\right)
$$

Scheme 1.

The NMR spectra of $\mathbf{4}$ revealed that these complexes were formed exclusively as the cis isomer except in a few cases where a small quantity of trans isomer also formed. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for the cis complexes exhibited two sets of methylene proton resonances of SeBz groups each flanked by ${ }^{77} \mathrm{Se}$ satellites $\left({ }^{2} J\left({ }^{77} \mathrm{Se}-\right.\right.$ $\left.{ }^{1} \mathrm{H}\right) \sim 10 \mathrm{~Hz}$). The downfield signal, appearing as a triplet due to phosphorus coupling, has been attributed to the SeBz group trans to the phosphine ligand. The high field signal, appearing as a singlet, has been assigned to the SeBz group trans to the terminal chloride ligand. The methylene proton resonances of the benzyl group for platinum complexes were further flanked by ${ }^{195} \mathrm{Pt}$ satellites. The trans isomer, as expected, showed only one methylene proton resonance.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra (Table 1) displayed a single set of resonances for cis and trans isomers, the signal for the latter is considerably deshielded com-

Table 1
${ }^{31} \mathrm{P}$ - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data for benzylselenolate complexes of palladium and platinum

Complex	${ }^{31} \mathrm{P}-\mathrm{NMR} \mathrm{data}$			${ }^{1} \mathrm{H}-\mathrm{NMR}$ data $\delta{ }^{1} \mathrm{H}(\mathrm{ppm})$
	$\delta{ }^{31} \mathrm{P}(\mathrm{ppm})$	${ }^{1} J(\mathrm{Pt}-\mathrm{P})(\mathrm{Hz})$	Other couplings (Hz)	
2	17.9	2964		$4.46\left(\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=4.3 \mathrm{~Hz} ; J(\mathrm{Pt}-\mathrm{H})=36.5 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right) ; 7.04-7.52(\mathrm{~m}, \mathrm{Ph})$
3a	49.8			$\begin{aligned} & 2.23\left(\mathrm{~d}, 21.4 \mathrm{~Hz}, \mathrm{PCH}_{2}\right) ; 3.87\left(\mathrm{~d}, \mathrm{~J}(\mathrm{P}-\mathrm{H})=3.5 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right) ; 7.01-7.17 \\ & (\mathrm{~m}), 7.36-7.51(\mathrm{~m}), 7.70-7.82(\mathrm{~m}) \mathrm{Ph} \end{aligned}$
3b	-51.8	2389	${ }^{2} J(\mathrm{Se}-\mathrm{P})=29$	
3c	47.0	2842		$\begin{aligned} & 2.17(\mathrm{~d}, 18.9 \mathrm{~Hz}, \mathrm{PCH} \\ & \mathrm{Se}) ; 3.83(\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=3 \mathrm{~Hz}, J(\mathrm{Pt}-\mathrm{H})=25 \mathrm{~Hz} \\ & \left.\mathrm{Se} \mathrm{H}_{2}\right) ; 7.01-7.24(\mathrm{~m}) ; 7.30-7.48(\mathrm{~m}) ; 7.70-7.91(\mathrm{~m}) \mathrm{Ph} \end{aligned}$
4a	$\begin{aligned} & \text { (cis) 13.8; (trans) } \\ & 31.2 \end{aligned}$		${ }^{2} J(\mathrm{Se}-\mathrm{P})=62.6$	$1.03\left(\mathrm{t}, 7.1 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.44-1.55\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}-\right) ; 1.69-1.79$ (m, $\left.\mathrm{PCH}_{2}-\right) ; 3.80(\mathrm{~s}, J(\mathrm{Se}-\mathrm{H})=12 \mathrm{~Hz}), \mathrm{SeCH}_{2}$ trans to Cl$) ; 4.51(\mathrm{t}, 4.7$ $\mathrm{Hz}, \mathrm{SeCH}_{2}$ trans to P); 4.40 (s, $\mathrm{SeCH}_{2} J(\mathrm{Se}-\mathrm{H})=11 \mathrm{~Hz}$ trans isomer); 7.15-7.65 (m, Ph) for cis and trans isomers
4b	14.1		${ }^{2} J(\mathrm{Se}-\mathrm{P})=64$	$0.94\left(\mathrm{t}, 6.9 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); 1.43 (br, $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$); 1.71-1.81 (m, PCH ${ }_{2}$); $3.80\left(\mathrm{~s}, \mathrm{SeCH}_{2}\right.$ trans to Cl$) ; 4.50$ (t, ${ }^{4} J(\mathrm{P}-\mathrm{H})=4.6 \mathrm{~Hz}, \mathrm{SeCH}_{2}$ trans to P$) ; 7.15\left(\mathrm{t}, 7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 7.40$ (d, $7.4 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5}$); $7.65\left(\mathrm{~d}, 7.1 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 7.23-7.31(\mathrm{~m}, \mathrm{Ph})$
$4 c^{\text {a }}$	$\begin{aligned} & \text { (cis) -3.8; (trans) } \\ & 10.1 \end{aligned}$		${ }^{2} J(\mathrm{Se}-\mathrm{P})=65$	1.50 (d), 1.64 (d) (each $11 \mathrm{~Hz}, \mathrm{PMe}_{2}$, major cis isomer), 1.59 (d), 1.77 (d) (each $12.4 \mathrm{~Hz}, \mathrm{P} \mathrm{Me}_{2}$, trans isomer); $3.38\left(\mathrm{~s},{ }^{2} J(\mathrm{Se}-\mathrm{H})=10 \mathrm{~Hz}\right.$, SeCH_{2} trans to Cl$) ; 4.54\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=5.1 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right.$ trans to P$)$ [cis isomer]; 3.90 (s, SeCH_{2}, trans isomer, 10%);7.14-7.47 (m); 7.64 (d), (Ph)
4d	21.2		${ }^{2} J(\mathrm{Se}-\mathrm{P})=64$	3.23 (s, trans to Cl, SeCH2); $4.83\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=4.9 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right.$ trans to PPh_{3},); 6.84-7.76 (m, Ph)
4e	33.1			$\begin{aligned} & 0.46(\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=3.3 \mathrm{~Hz}, \mathrm{Pd}-\mathrm{Me}) ; 3.13-3.83\left(\mathrm{br}, \mathrm{SeCH}_{2}\right) ; 7.01-7.13 \\ & (\mathrm{~m}) ; 7.32-7.41(\mathrm{~m}) ; 7.60-7.74(\mathrm{~m})(\mathrm{Ph}) \end{aligned}$
4f	7.5	3219	$\begin{aligned} & { }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{31} \mathrm{P}\right)=57 \\ & { }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}\right)=846 \end{aligned}$	1.07 (td, $16.7 \mathrm{~Hz}, \mathrm{~d} ; 7.6 \mathrm{~Hz}, \mathrm{t}$; $\mathrm{PCH}_{2} \mathrm{CH}_{3}$); $1.60-1.94\left(\mathrm{~m}, \mathrm{PCH}_{2}\right) ; 3.93$ $\left(\mathrm{s},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=41 \mathrm{~Hz} ;{ }^{2} J(\mathrm{Se}-\mathrm{H})=11 \mathrm{~Hz} ; \mathrm{SeCH}_{2}\right.$ trans to Cl$) ; 4.64(\mathrm{t}$, ${ }^{4} J(\mathrm{P}-\mathrm{H})=3.7 \mathrm{~Hz} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=21 \mathrm{~Hz} ; \mathrm{SeCH}_{2}$ trans to $\left.\mathrm{PEt}_{3}\right) ; 7.14(\mathrm{t}, 7.3$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$); 7.41-7.44 (m, 3H, $\mathrm{C}_{6} \mathrm{H}_{5}$); $\left.7.60\left(\mathrm{~d}, 7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}$ ($\mathrm{Ph}, \mathrm{SeBz}$ trans to P); 7.23-7.31 (m) ($\mathrm{Ph}, \mathrm{SeBz}$ cis to P)
4 g	-0.8	3194	$\begin{aligned} & { }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{31} \mathrm{P}\right)=57 ; \\ & { }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}\right)=860 \end{aligned}$	$1.02\left(\mathrm{t}, 7 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.42-1.58\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}-\right) ; 1.61-1.86$ $(\mathrm{m}, \mathrm{PCH}-) ; 3.91\left(\mathrm{~s},{ }^{2} J(\mathrm{Se}-\mathrm{H})=10 \mathrm{~Hz}\right),{ }^{3} J(\mathrm{Pt}-\mathrm{H})=41 \mathrm{~Hz} ; \mathrm{SeCH}_{2}$ trans to Cl$) ; 4.63\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=3.7 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=21 \mathrm{~Hz}, \mathrm{SeCH}_{2}\right.$ trans to P); $7.13\left(\mathrm{t}, 6.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 7.60(\mathrm{~d}, 7.6 \mathrm{~Hz}$, $\left.\left.2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}(\mathrm{Ph}, \mathrm{SeBz}$ trans to P$) ; 7.25-7.30(\mathrm{~m})(\mathrm{Ph}, \mathrm{SeBz}$ cis to P$)$
4h	-1.3	3323	${ }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{-31} \mathrm{P}\right)=60$	$\begin{aligned} & 2.03\left(\mathrm{~d}, J(\mathrm{P}-\mathrm{H})=11 \mathrm{~Hz} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=30 \mathrm{~Hz}, \mathrm{PMe}\right) ; 3.19(\mathrm{~s}, \\ & \left.{ }^{3} J(\mathrm{Pt}-\mathrm{H})=40 \mathrm{~Hz}, \mathrm{SeCH}_{2}, \text { trans to } \mathrm{Cl}\right) ; 4.78\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=4 \mathrm{~Hz}\right. \text {, } \\ & \left.{ }^{3} J(\mathrm{Pt}-\mathrm{H})=23 \mathrm{~Hz} ; \mathrm{SeCH}_{2} \text {, trans to } \mathrm{P}\right) ; 6.90-7.68(\mathrm{~m}, \mathrm{Ph}) \end{aligned}$
4i	-13.2	3823		$\left.\begin{array}{l} 0.70\left(\mathrm{~d},{ }^{3} J(\mathrm{P}-\mathrm{H})=4.4 \mathrm{~Hz} ;{ }^{2} J(\mathrm{Pt}-\mathrm{H})=73 \mathrm{~Hz} ; \mathrm{Pt} M e\right) ; 1.59(\mathrm{~d}, \\ \left.{ }^{2} J(\mathrm{P}-\mathrm{H})=10 \mathrm{~Hz} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=41 \mathrm{~Hz}, \mathrm{P} M e_{2}\right) ; 3.69\left(\mathrm{~s},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=15 \mathrm{~Hz},\right. \\ \mathrm{SeCH}, \text { trans to } \mathrm{Pt} \mathrm{Me}) ; 4.15\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=3.4 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=26 \mathrm{~Hz}\right. \\ \mathrm{SeCH} \end{array} \mathrm{CH} \text {, trans to } \mathrm{P}\right) ; 7.04-7.47(\mathrm{~m}), 7.65-7.71(\mathrm{~m})(\mathrm{Ph}) ~ \$ ~ l$
5a	31.2			$1.03\left(\mathrm{t}, 7.1 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right) ; 1.47-1.59\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}-\right) ; 1.69-1.84$ ($\mathrm{m}, \mathrm{PCH} \mathrm{H}_{2}$); 4.39 ($\mathrm{s}, \mathrm{SeCH}_{2}$ cis to P); 7.29-7.34 (m, 3, 4, 5H, Ph); 7.54 (d, $7.2 \mathrm{~Hz}, 2,6 \mathrm{H}, P h$)
5b	0.1	3950		1.03 (t, $7.2 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{Me}$); 1.48-1.59 (m, $\mathrm{PCH}_{2} \mathrm{CH}_{2}-$); 1.62-1.87 (m, PCH ${ }_{2}$); $4.36\left(\mathrm{~s},{ }^{3} J(\mathrm{Pt}-\mathrm{H}) 38 \mathrm{~Hz}\right) ; 7.29-7.34(\mathrm{~m}, 3,5 \mathrm{H}, \mathrm{Ph})$, $7.51-7.55(\mathrm{~m}, 2,6 \mathrm{H}, \mathrm{Ph})$
5c	-4.4	4192		$\begin{aligned} & 2.06\left(\mathrm{~d},{ }^{2} J(\mathrm{P}-\mathrm{H})=12 \mathrm{~Hz} ;{ }^{3} J(\mathrm{Pt}-\mathrm{H})=39 \mathrm{~Hz}, \mathrm{P} M e\right) ; 3.62(\mathrm{~s}, \\ & \left.{ }^{3} J(\mathrm{Pt}-\mathrm{H})=32 \mathrm{~Hz}, \mathrm{SeCH}_{2} \text { trans to } \mathrm{Cl}\right) ; 7.00-7.60(\mathrm{~m}, \mathrm{Ph}) \end{aligned}$
6 a	18.3			$1.03\left(\mathrm{t}, 7.2 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$; 1.42-1.59 (m, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{2}-\right)$; 1.71-1.87 ($\mathrm{m}, \mathrm{PCH}_{2}$) ; 3.50 ($\mathrm{s}, \mathrm{SeCH}_{2}$ trans to Cl); 6.18 (t, $1.9 \mathrm{~Hz}, 3 \mathrm{H}$, pz trans to P); 7.25-7.35 (m, Ph); 8.01 (s, br, 2,4H, pz)
6b	-8.6	3170	${ }^{3} J(\mathrm{Pt}-\mathrm{P})=39$	$\left.\left.\begin{array}{l} 1.02\left(\mathrm{t}, 7.1 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right) ; 1.40-1.49\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ; 1.74-1.83 \\ (\mathrm{~m}, \mathrm{PCH} \end{array}\right) ; 3.43\left(\mathrm{~s},{ }^{3} \mathrm{~J}(\mathrm{Pt}-\mathrm{H})=40 \mathrm{~Hz}, \operatorname{SeCH}\right)_{2}\right) ; 6.29(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}, \mathrm{pz}) ; 1 \text {; }$
7	$-2.2{ }^{\text {b }} ;-0.8^{\text {c }}$	3102; 3190		$1.09\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right) ; 1.42-1.53\left(\mathrm{~m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ; 1.57-1.75(\mathrm{~m}$, $\left.\mathrm{PCH}_{2}\right) ; 1.80\left(\mathrm{~s}, \mathrm{SBu}^{\mathrm{t}}\right) ; 4.11\left(\mathrm{~s},{ }^{2} J(\mathrm{Se}-\mathrm{H})=10 \mathrm{~Hz},{ }^{3} J(\mathrm{Pt}-\mathrm{H})=42 \mathrm{~Hz}\right.$, SeBz trans to Cl$) ; 4.63\left(\mathrm{t},{ }^{4} J(\mathrm{P}-\mathrm{H})=3.7 \mathrm{~Hz}, \mathrm{SeBz}\right.$ trans to P$) ; 7.15(\mathrm{t}$, 4H); 7.45-7.48 (m, 3H); 7.60 (d, 6.9 Hz, 2H; Ph for SeBz trans to P); 7.25-7.39 (m, Ph for SeBz trans to Cl)

a cis:trans ratio 9:1.
${ }^{\mathrm{b}}$ Phosphine trans to bridging SBu^{t}; major isomer.
${ }^{\mathrm{c}}$ Phosphine trans to bridging SeBz; minor isomer (by integration of ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum).
pared with that for the former. These signals were flanked by the ${ }^{77} \mathrm{Se}$ isotope with ${ }^{2} J(\mathrm{Se}-\mathrm{P}) \sim 60 \mathrm{~Hz}$. The spectra of platinum complexes displayed ${ }^{1} J(\mathrm{Pt}-\mathrm{P})$ couplings which can be compared with the couplings reported for organochalcogenolate bridged complexes $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{ER})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right](\mathrm{E}=\mathrm{S}, \mathrm{Se}, \mathrm{Te})[9,10,16,17]$.

The ${ }^{195} \mathrm{Pt}$-NMR spectra of $\mathbf{4 g}\left(\delta-4072,{ }^{1} J\left({ }^{195} \mathrm{Pt}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right) 3200 \mathrm{~Hz},{ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}\right)=841 \mathrm{~Hz}\right)$ and $4 \mathrm{~h}(\delta-$ $\left.4107,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 3310 \mathrm{~Hz},{ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}\right)=929 \mathrm{~Hz}\right)$ displayed the expected doublet due to coupling with

$$
\left[\mathrm{M}_{2} \mathrm{X}_{2}\left(\mu-\mathrm{Cl}_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]+2 \mathrm{NaSeBz}\right.
$$

(4)

M	X	$P R_{3}$	
Pd	Cl	$\mathrm{PPr}_{3}{ }_{3}$	4a
Pd	Cl	PBu_{3}	4b
Pd	Cl	$\mathrm{PMe}_{2} \mathrm{Ph}$	4e
Pd	Cl	PPh_{3}	4d
Pd	Me	PPh_{3}	4 e
Pt	Cl	PEt_{3}	4 f
Pt	Cl	$\mathrm{PPr}_{3}{ }_{3}$	4g
Pt	Cl	PMePh_{2}	4h
Pt	Me	PMe ${ }_{2} \mathrm{Ph}$	$4 i$

$\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{pz})(\mu-\mathrm{SeBz})\left(\mathrm{PR}_{3}\right)_{2}\right]$
(6)
$\left[\mathrm{PR}_{3}=\operatorname{PPr}^{\mathrm{n}} ; \mathrm{M}=\mathrm{Pd}(\mathbf{6 a})\right.$ or $\left.\mathrm{Pt}(\mathbf{6 b})\right]$

Scheme 2.

Fig. 1. ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectrum of $\mathbf{4 g}$ in CDCl_{3}.
phosphorus nuclei. The magnitude of ${ }^{2} J\left({ }^{195} \mathrm{Pt}-{ }^{195} \mathrm{Pt}\right)$ couplings can be compared with bis(organochalcogeno-lato)-bridged complexes, $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu \text {-ER })_{2}\left(\mathrm{PR}_{3}\right)_{2}\right][10,18]$. The ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}$-NMR spectra of $\mathbf{4 b}[\delta 38.8$ (cis to P), 29.1 (trans to P$)]$ and $\mathbf{4 g}\left[\delta 11.8,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{77} \mathrm{Se}\right)=134\right.$ $\mathrm{Hz}($ cis to P$) ;-25.3,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{77} \mathrm{Se}\right)=229 \mathrm{~Hz},{ }^{2} J\left({ }^{77} \mathrm{Se}-\right.$ $\left.{ }^{31} \mathrm{P}\right)=39 \mathrm{~Hz}$ (trans to P)] exhibited two signals attributable to bridging SeBz groups, each trans to chloride and phosphine ligands. The ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ spectra of $\mathbf{4 g}$ (Fig. 1) showed couplings due to ${ }^{195} \mathrm{Pt}$ and ${ }^{31} \mathrm{P}$ nuclei. The BzSe group trans to phosphine exhibited phosphorus couplings $\left({ }^{2} J\left({ }^{77} \mathrm{Se}-{ }^{31} \mathrm{P}\right)=39 \mathrm{~Hz}\right)$ while for the BzSe trans to chloride such couplings are not resolved as the ${ }^{2} J(\mathrm{Se}-\mathrm{P})_{c i s}$ are $<10 \mathrm{~Hz}$ [15b]. The magnitude of $J\left({ }^{195} \mathrm{Pt}-{ }^{77} \mathrm{Se}\right)$ for BzSe trans to P is greater than that of the trans to Cl . The compound 7 also existed in two cis configurations (\mathbf{B} and $\mathbf{C} ; \mathrm{Y}=$ $\mathrm{SBu}^{t}, \mathrm{Cl}$), thus the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra displayed two signals, and the isomer with the phosphines trans to SBu^{t} predominated.

On the basis of NMR data 5 and 6 have been assigned a cis configuration with phosphine ligands trans to bridging $\mathrm{Y}(\mathrm{Y}=\mathrm{Cl}$ or pz$)(\mathbf{C})$. Accordingly the methylene proton signal of SeBz in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra did not show ${ }^{4} J(\mathrm{P}-\mathrm{H})$ couplings. The ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra of $\mathbf{5 b}$ and $\mathbf{5 c}$ showed considerably large ${ }^{1} J(\mathrm{Pt}-$ $\mathrm{P})$ couplings. ${ }^{195} \mathrm{Pt}$ and ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ spectra of $\mathbf{5 b}$ were recorded in CDCl_{3}. The ${ }^{195} \mathrm{Pt}-\mathrm{NMR}$ spectrum exhibited the expected doublet at $\delta-3986$ with ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)=$ 3955 Hz . The ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ spectrum showed a triplet at δ 69.2 with ${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{77} \mathrm{Se}\right)=113 \mathrm{~Hz}$. The magnitude of ${ }^{2} J(\mathrm{Se}-\mathrm{P})$ appears to be small which further suggests that phosphine is cis to the bridging SeBz group. Recently we have reported a series of organochalcogeno-lato-bridged complexes of type $\mathbf{5}$ and $\mathbf{6}$ for which a cis configuration (C) has been established by X-ray diffraction data $[16,19-22]$.

2.3. Structure of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](\mathbf{4 g})$

The crystal and molecular structure of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](\mathbf{4 g})$ together with atomic numbering scheme is shown in Fig. 2. Selected bond lengths and angles are summarized in Table 2. The molecule consists of two slightly distorted square planar platinum atoms which are bridged together by two benzylselenolato groups. The platinum atoms $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ showed deviation of 0.046 and $0.032 \AA$, respectively, from the mean planes defined by $\mathrm{P}(1) \mathrm{Cl}(1) \mathrm{Se}(1) \mathrm{Se}(2)$ and $\mathrm{P}(2) \mathrm{Cl}(2) \mathrm{Se}(1) \mathrm{Se}(2)$. The molecule has a sym-cis configuration with a non-planar four-membered ${ }^{\prime} \mathrm{Pt}_{2} \mathrm{Se}_{2}{ }^{\prime}$ ring (hinge angle 131.1°). This is in contrast to the ethylselenato-bridged complex $\quad\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\mathrm{SeEt})_{2}\left(\mathrm{PEt}_{3}\right)_{2}$] which has a planar $\mathrm{Pt}_{2} \mathrm{Se}_{2}$ ring [9]. Alkylthiolato-bridged palladium and platinum complexes adopt a non-planar conformation for the four-

Fig. 2. Molecular structure with atomic numbering scheme of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SeBz}_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](\mathbf{4 g})\right.$.

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SeBz})_{2}\left(\operatorname{PPr}_{3}^{r}\right)_{2}\right]$ (4g)

$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.253(3)$	$\mathrm{Pt}(2)-\mathrm{P}(2)$	$2.257(3)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.338(2)$	$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$2.345(3)$
$\mathrm{Pt}(1)-\mathrm{Se}(1)$	$2.3885(10)$	$\mathrm{Pt}(2)-\mathrm{Se}(1)$	$2.3874(12)$
$\mathrm{Pt}(1)-\mathrm{Se}(2)$	$2.4829(13)$	$\mathrm{Pt}(2)-\mathrm{Se}(2)$	$2.4734(11)$
$\mathrm{Se}(1)-\mathrm{C}(1)$	$2.015(10)$	$\mathrm{Se}(2)-\mathrm{C}(8)$	$1.979(10)$
$\mathrm{Pt}(1)-\mathrm{Se}(1)-\mathrm{Pt}(2)$	$89.99(4)$	$\mathrm{Pt}(1)-\mathrm{Se}(2)-\mathrm{Pt}(2)$	$85.89(4)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$89.19(10)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$88.63(10)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Se}(1)$	$96.09(7)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Se}(1)$	$96.03(8)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Se}(1)$	$174.72(8)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{Se}(1)$	$171.06(9)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{Se}(2)$	$175.26(8)$	$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Se}(2)$	$175.49(9)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Se}(2)$	$93.88(8)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{Se}(2)$	$94.69(8)$
$\mathrm{Se}(1)-\mathrm{Pt}(1)-\mathrm{Se}(2)$	$80.88(4)$	$\mathrm{Se}(1)-\mathrm{Pt}(2)-\mathrm{Se}(2)$	$81.10(4)$
$\mathrm{Se}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$112.2(8)$	$\mathrm{Se}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$110.9(8)$

membered ' $\mathrm{M}_{2} \mathrm{SRX}$ ' $(\mathrm{X}=\mathrm{SR}$ or Cl$)$ with dihedral angle varying in the range $130-154^{\circ}$ between the two coordination planes [16,20,23-26].

The $\mathrm{Pt}-\mathrm{Cl}[2.338(2), 2.345(3) \AA$ A $], \mathrm{Pt}-\mathrm{P}, \mathrm{Se}-\mathrm{C}$ and $\mathrm{P}-\mathrm{C}$ distances are in agreement with the values reported in the literature $[1,4,5,8-10,16,24]$. There are distinctly two types of $\mathrm{Pt}-\mathrm{Se}$ bonds, the one trans to phosphine is longer $(\sim 0.1 \AA)$ than that trans to chloride, in accordance with the trans influence of the PR_{3} and Cl ligands. These distances can be compared with those observed in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SeEt}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right][9],\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.\right.$ $\left.\mathrm{Cl})(\mu-\mathrm{SeEt})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right][22]$ and similar other complexes [27-29]. The two $\mathrm{Pt}-\mathrm{Se}-\mathrm{Pt}$ angles [89.99(4), 85.89(4) ${ }^{\circ}$]
are significantly smaller than those observed in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SeEt})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ [9] $\left(96.9^{\circ}\right)$, but can be compared with the alkylthiolato bridged complex $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{SEt})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ [85.1(2), 89.7(2) ${ }^{\circ}$ [[24]. The benzyl groups adopt an anti configuration.

2.4. Thermal studies

In order to evaluate whether the benzylselenolate complexes reported here can serve as precursors for the synthesis of palladium selenides, thermolysis of one representative complex, $\left[\mathrm{Pd}(\mathrm{SeBz})_{2}\right]_{n}$ (1a) was studied. The thermogravimetric analysis (TGA) (Fig. 3) of 1a was carried out in a flowing argon atmosphere. The TG trace (Fig. 3) shows two stages of decomposition. The product formed after the first stage of decomposition (in the temperature range $210-500^{\circ} \mathrm{C}$) was identified as a mixture of PdSe_{2} and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ contaminated with carbon (typical analysis of a sample heated at $300^{\circ} \mathrm{C}: \mathrm{C}$, 7.7; H, 0.6; Se, 49.1; Pd, 40.4\%, XRD pattern showed peaks due to PdSe_{2} and $\mathrm{Pd}_{17} \mathrm{Se}_{15}$). In the second stage of decomposition (above $600^{\circ} \mathrm{C}$) selenium is eleminated leading to the formation of $\mathrm{Pd}_{17} \mathrm{Se}_{15}$ as indicated by the weight loss and XRD pattern which compares well with the reported pattern (JCPDS-ICDD 29-1437; 11-508). The carbon contents ($\mathrm{C} 5.7 \%$) in this product were reduced slightly.

3. Experimental details

The complexes $\left[\mathrm{MCl}_{2}(\mathrm{~L}-\mathrm{L})\right] \quad[30,31], \quad\left[\mathrm{M}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right][32](\mathrm{M}=\mathrm{Pd}$ or Pt; L-L $=\mathrm{dppm}$, dppe, $2 \mathrm{PPh}_{3} ; \mathrm{PR}_{3}=\mathrm{PEt}_{3}, \mathrm{PPr}_{3}^{n}, \mathrm{PBu}_{3}^{n}, \mathrm{PMe}_{2} \mathrm{Ph} ; \mathrm{PMePh}_{2}$ or $\left.\mathrm{PPh}_{3}\right),\left[\mathrm{M}_{2} \mathrm{Me}_{2}(\mu-\mathrm{Cl})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right][33,34]$ and $\mathrm{Bz}_{2} \mathrm{Se}_{2}(\mathrm{Bz}=$ $\mathrm{PhCH}_{2}-$) were prepared according to literature methods. Due to slow photodecomposition of $\mathrm{Bz}_{2} \mathrm{Se}_{2}$, it was recrystallized every month from petroleum ether, m.p.

Fig. 3. TG curve for $\left[\mathrm{Pd}(\mathrm{SeBz})_{2}\right]_{n}$.

Table 3
Physical and analytical data for benzylselenolate complexes of palladium and platinum

Complex		Recrystallization solvent	Yield (\%)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Analysis: found (calc. $)(\%)$

[^1]$90^{\circ} \mathrm{C}$ (lit. $90-91^{\circ} \mathrm{C}$) [35]. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in $\mathrm{CDCl}_{3}: \delta=3.86$ (s, ${ }^{2} J(\mathrm{Se}-\mathrm{H}) 14.5 \mathrm{~Hz} ; \mathrm{SeCH}_{2}$), $7.25-7.31$ (m, Ph). ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}$-NMR in $\mathrm{CDCl}_{3}: \delta=400.3$. The tertiary phosphines (Strem Chemicals, USA) and NaBH_{4} were obtained from commercial sources. Reactions were carried out under nitrogen using Schlenk techniques in dry and distilled analytical grade solvents. The ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$, ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{195} \mathrm{P} t\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}$ spectra were recorded on a Bruker DPX-300 NMR spectrometer operating at 300.00 , $121.49,57.31$, and 64.52 MHz , respectively. Chemical shifts are relative to internal chloroform (δ 7.26 ppm) for ${ }^{1} \mathrm{H}$, external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}, \mathrm{Me}_{2} \mathrm{Se}$ for ${ }^{77} \mathrm{Se}$ and $\mathrm{Na}_{2} \mathrm{PtCl}_{6}$ in $\mathrm{D}_{2} \mathrm{O}$ for ${ }^{195} \mathrm{Pt}$. A 90° pulse was used in every case. Thermogravimetric analysis (TGA) was carried out on a Setaram 92-16-18 instrument. The TG curves were recorded at a heating rate of $10^{\circ} \mathrm{C}$ min^{-1} under a flow of argon. Microanalyses of the complexes were carried out in the Analytical Chemistry Division of this research centre.

3.1. $\left[\left\{\mathrm{Pd}(\mathrm{SeBz})_{2}\right\}_{n}\right](\mathbf{1 a})$

To a dichloromethane solution ($10 \mathrm{~cm}^{3}$) of $\mathrm{Bz}_{2} \mathrm{Se}_{2}$ ($1.112 \mathrm{gm}, 3.27 \mathrm{mmol}$) was added a methanolic solution of $\mathrm{NaBH}_{4}(255 \mathrm{mg}, 6.74 \mathrm{mmol})$ at room temperature with stirring for 5 min whereupon the yellow coloured solution became colourless. To this an aqueous solution $\left(10 \mathrm{~cm}^{3}\right)$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(954 \mathrm{mg}, 3.24 \mathrm{mmol})$ was added immediately. A brown precipitate formed. The reac-
tants were stirred for 5 h . The brown insoluble product was filtered off, washed with water, ethanol and diethylether and dried in vacuo (yield $1.19 \mathrm{~g}, 82 \%$). The product was sparingly soluble in dichloromethane. It was extracted in 90% yield from dichloromethane using Soxhlet apparatus. Pertinent data are summarized in Table 3.

3.2. $\left[\left\{\mathrm{Pt}(\mathrm{SeBz})_{2}\right\}_{n}\right]$ (1b)

This was prepared in 95% yield in an analogous manner to complex 1a from $\mathrm{Bz}_{2} \mathrm{Se}_{2}(259 \mathrm{mg}, 0.76$ mmol), $\mathrm{NaBH}_{4}(62 \mathrm{mg}, 1.64 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{PtCl}_{4}(309$ $\mathrm{mg}, 0.74 \mathrm{mmol}$). It was extracted in 37% yield from dichloromethane using Soxhlet apparatus.

3.3. $\left[\mathrm{Pt}(\mathrm{SeBz})_{2}\left(P \mathrm{Ph}_{3}\right)_{2}\right](\mathbf{2})$

(a) Analogously as described for 3a, by using $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](458 \mathrm{mg}, 0.58 \mathrm{mmol})$ and NaSeBz [prepared from $\mathrm{Bz}_{2} \mathrm{Se}_{2}(199 \mathrm{mg}, 0.59 \mathrm{mmol})$ and NaBH_{4} $(47.3 \mathrm{mg}, 1.24 \mathrm{mmol}$) as starting materials]. Recrystallized from benzene-hexane as orange crystals in 40% yield.
(b) To a dichloromethane suspension $\left(8 \mathrm{~cm}^{3}\right)$ of $\left[\left\{\mathrm{Pt}(\mathrm{SeBz})_{2}\right\}_{n}\right](55 \mathrm{mg}, 0.10 \mathrm{mmol})$ was added solid $\mathrm{PPh}_{3}(56 \mathrm{mg}, 0.21 \mathrm{mmol})$ and the mixture was stirred for 1 h . The clear solution was filtered and the filtrate concentrated in vacuo, and washed with hexane and
dried to give 28% title complex. The NMR spectra were consistent with the product obtained in (a).

3.4. Reaction of $\mathbf{2}$ with methyl iodide

To a dichloromethane solution ($15 \mathrm{~cm}^{3}$) of $[\mathrm{Pt}(-$ $\mathrm{SeBz})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$] ($50 \mathrm{mg}, 0.05 \mathrm{mmol}$) excess MeI was added, and the yellow coloured solution was stirred for 4 h . The solvent was evaporated in vacuo. The residue was washed with hexane, diethylether and dichloromethane to leave a pale yellow residue. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=7.38-7.43$ (br); 7.72-7.75 (br) (Ph). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=12.6\left[{ }^{1} J(\mathrm{Pt}-\mathrm{P})=2497 \mathrm{~Hz}\right]$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2} \mathrm{I}_{2} \mathrm{Pt}$ (973.5): C, 44.4; H, 3.2. Found: C, 43.9; H, 2.9\%.

3.5. $\left[\mathrm{Pd}(\mathrm{SeBz})_{2}(d p p e)\right](\mathbf{3 a})$

(a) To a methanolic solution ($15 \mathrm{~cm}^{3}$) of NaSeBz (prepared from $\mathrm{Bz}_{2} \mathrm{Se}_{2}(125 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol})$ a dichloromethane suspension of $\left[\mathrm{PdCl}_{2}(\mathrm{dppe})\right](204 \mathrm{mg}, 0.35 \mathrm{mmol})$ was added at once and the resulting orange coloured mixture was stirred for 4 h . The solvents were evaporated in vacuo and the orange red residue was extracted with dichloromethane ($3 \times 8 \mathrm{~cm}^{3}$), and was passed through a Florisil column. The solvent was evaporated in vacuo and the residue obtained as an orange crystalline solid.

Similarly 3b and 3c were prepared. 3a can also be prepared from $\left[\mathrm{Pd}(\mathrm{SeBz})_{2}\right]_{n}$ and dppe as described for 2 (method (b)).

3.6. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right]$ (4a)

A dichloromethane solution $\left(10 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{Cl})_{2}\left(\operatorname{PPr}_{3}^{n}\right)_{2}\right](325 \mathrm{mg}, 0.48 \mathrm{mmol})$ was added to a freshly prepared methanolic solution of NaSeBz [prepared from $\mathrm{Bz}_{2} \mathrm{Se}_{2}(165 \mathrm{mg}, 0.49 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(39 \mathrm{mg}$, 1.03 mmol)] with stirring at room temperature. After stirring the mixture for 4 h , the solvents were evaporated in vacuo. The yellow-orange coloured residue was extracted with dichloromethane $\left(3 \times 8 \mathrm{~cm}^{3}\right)$, the solution was passed through a Florisil column and the solvents evaporated in vacuo. The residue was dissolved in acetone to leave some orange-red coloured solid (yield $193 \mathrm{mg}, \mathrm{m} . \mathrm{p} .182^{\circ} \mathrm{C}$; found: C, $40.0 ; \mathrm{H}, 4.8 \%$) and the filtrate afforded yellow crystals (m.p. $156^{\circ} \mathrm{C}$; 128 mg ; 28%) which can be recrystallized with dichloromethane-hexane.

Other binuclear bis(selenolato) bridged complexes were prepared in a similar manner.

3.7. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SeBz})\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](5 \boldsymbol{a})$

To a dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](224 \mathrm{mg}, 0.24 \mathrm{mmol})$ solid $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\right.$
$\left.\mathrm{Cl})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](162 \mathrm{mg}, 0.24 \mathrm{mmol})$ (yellow or a mixture of yellow and orange-red forms can be taken) was added, and stirred for 5 h . The solvent was evaporated in vacuo. Similarly $\mathbf{5 b}$ and $\mathbf{5 c}$ were prepared in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

3.8. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{pz})(\mu-\mathrm{SeBz})\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](\boldsymbol{6 a})$

To a solution of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SeBz})\left(\operatorname{PPr}_{3}^{n}\right)_{2}\right](104$ $\mathrm{mg}, 13 \mathrm{mmol})$ was added a methanolic solution $\left(2 \mathrm{~cm}^{3}\right)$ of $\mathrm{pzH}(11 \mathrm{mg}, 0.16 \mathrm{mmol})$ containing aq. NaOH solution ($1.62 \mathrm{~cm}^{3}, 0.1 \mathrm{~N}$) with vigorous stirring which continued for 5 h . The solvent was evaporated in vacuo. It was extracted with dichloromethane and passed through a Florisil column. The solvent was evaporated in vacuo and the residue was recrystallized from dichloromethane-hexane as a yellow solid in 55% $(60 \mathrm{mg})$ yield.

3.9. $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{SBu}{ }^{t}\right)(\mu-\mathrm{SeBz})\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right]$ (7)

To a dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{Cl})(\mu-\mathrm{SeBz})\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](81 \mathrm{mg}, 0.08 \mathrm{mmol}) \mathrm{Bu}^{t} \mathrm{SH}(0.5$ cm^{3}) was added in excess, and stirred for 5 h at room temperature. The solvent was evaporated in vacuo. The residue was washed with hexane to remove the excess $\mathrm{Bu}^{t} \mathrm{SH}$; the residue on recrystallization from dichloromethane-hexane gave a pale yellow fibrous compound:

3.10. X-ray crystallographic study of $\mathbf{4 g}$

X-ray data on yellow crystals of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\right.$ $\left.\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{n}\right)_{2}\right](\mathbf{4 g})$ were collected at room temperature on an Enraf-Nonius CAD-4 diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $\quad(\lambda=$ $0.71073 \AA$) employing the $\omega-2 \theta$ scan technique. The unit cell parameters (Table 4) were determined from 25 reflections measured by random search routine and indexed by the method of short vectors followed by least-squares refinement. The intensity data were corrected for Lorentz-polarization and absorption effects. The structure was solved using SHELXS-86 [36] and SHELXL-97 [37] computer programs. The non-hydrogen atoms were refined anisotropically.

Acknowledgements

We thank Dr J.P. Mittal, Director, Chemistry and Isotope Group and Dr Prithviraj, Head, Novel Materials and Structural Chemistry Division, B.A.R.C. for encouragement of this work. We are grateful to the Head, Analytical Chemistry Division of this centre for providing microanalyses.

Table 4
Crystallographic data for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{SeBz})_{2}\left(\mathrm{PPr}_{3}^{r}\right)_{2}\right](\mathbf{4 g})$

Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2} \mathrm{Se}_{2}$
Formula weight	1121.71
Temperature (K)	293(2)
Wavelength (A)	0.71073
Crystal system, space group	Orthorhombic, Pbca
Unit cell dimensions	
$a(\AA)$	16.774(4)
$b(\AA)$	20.575(3)
$c(\AA)$	23.602(4)
Volume (A^{3})	8146(3)
Z	8
$D_{\text {calc }}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.829
Absorption coefficient (mm^{-1})	8.878
$F(000)$	4288
Crystal size(mm)	$0.2 \times 0.2 \times 0.1$
θ range for data collection (${ }^{\circ}$)	2.11-24.99
Index ranges	$\begin{aligned} & 0 \leq h \leq 19,0 \leq k \leq 24, \\ & 0 \leq l \leq 28 \end{aligned}$
Reflections collected/unique	7102/7102 [$\left.R_{\text {int }}=0.0000\right]$
Completeness to 20=24.99 (\%)	90.6
Absorption correction	Ψ scan
Maximum and minimum transmission	0.99 and 0.61
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	7102/0/362
Goodness of fit on F^{2}	1.055
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0401, w R_{2}=0.0651$
Largest difference peak and hole (e \AA^{-3})	0.764 and -0.818

References

[1] (a) I.G. Dance, Polyhedron 5 (1986) 1037. (b) P.J. Blower, J.R. Dilworth, Coord. Chem. Rev. 76 (1987) 121. (c) M.A. Ansari, J.A. Ibers. Coord. Chem. Rev. 100 (1990) 223.
[2] (a) K.W. Kim, M.G. Kanatzidis, J. Am. Chem. Soc. 114 (1992) 4878. (b) W. Hipro, S. Dhingra, M.G. Kanatzidis, J. Chem. Soc. Chem. Commun. (1992) 557. (c) M.A. Malik, P. O'Brien, D.J. Otway, Phosphorus Sulfur Silicon 136-138 (1998) 431.
[3] L. Dong, S.B. Duckett, F.F. Ohman, W.D. Jones, J. Am. Chem. Soc. 114 (1992) 151.
[4] (a) L.Y. Chiang, J.W. Swirczewski, R. Kastrup, C.S. Hsu, R.B. Upasani, J. Am. Chem. Soc. 113 (1991) 6574. (b) S. Eijsbouts, V.H.J. De Beer, R.Prins, J. Catal. 109 (1988) 217. (c) M. Misono, N.Nojiri, Appl. Catal. 64 (1990) 1.
[5] (a) T. Yamamoto, Jpn. Patent 61215661 (1986); Chem. Abstr. 106 (1987) 87694h. (b) Y. Idota, M. Yagihara, Fuji Photo Films Co. Ltd, Jpn. Patent 61186959 (1986); Chem. Abstr. 106 (1987) 166325s. (c) T. Oota, K. Yoshioka, T. Akyama, S. Mori, Jpn. Patent 07205548 (1995); Chem. Abstr. 123 (1995) 325855j.
[6] A. Singhal, V.K. Jain, R. Misra, B. Varghese, J. Mater. Chem. (2000) 1121.
[7] S. Narayan, V.K. Jain, K. Panneerselvam, T.H. Lu, S.F. Tung, Polyhedron 18 (1999) 1253.
[8] (a) J. Arnold, Prog. Inorg. Chem. 43 (1995) 353. (b) H.B. Singh, N. Sudha, Polyhedron 15 (1996) 745.
[9] V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, Polyhedron 14 (1995) 3641.
[10] V.K. Jain, S. Kannan, J. Organomet. Chem. 405 (1991) 265.
[11] S. Narayan, V.K. Jain, B. Verghese, J. Chem. Soc. Dalton Trans. (1998) 2359.
[12] V.K. Jain, S. Kannan, J. Organomet. Chem. 418 (1991) 349.
[13] (a) J.Y.C Chu, D.G. Marsh, W.H.H. Gunther, J. Am. Chem. Soc. 97 (1975) 4905. (b) D.L.J. Clive, W.A. Kiel, S.M. Menchen, A. Singh, N.J. Curtis. J. Am. Chem. Soc. 102 (1980) 4438. (c) H.K. Spencer, M.V. Lakshminathan, M.P. Cava, J. Am. Chem. Soc. 99 (1977) 1470.
[14] (a) N.R. Kunchur, Acta Crystallogr. Sect. B 24 (1968) 1623. (b) J.D. Higgins, J.W. Suggs, Inorg. Chim. Acta. 145 (1988) 247.
[15] (a) V.K. Jain, S. Kannan, E.R.T. Tiekink, J. Chem. Soc. M (1994) 501. (b) A. Singhal, V.K. Jain, B. Varghese, E.R.T. Tiekink, Inorg. Chim. Acta. 285 (1999) 190.
[16] V.K. Jain, R.P. Patel, K. Venkatasubramanian, Polyhedron 10 (1991) 851.
[17] V.K. Jain, S. Kannan, R.J. Butcher, J.P. Jasinski, J. Organomet. Chem. 468 (1994) 285.
[18] P.S. Pregosin, Coord. Chem. Rev. 96 (1989) 1.
[19] V.K. Jain, S. Kannan, R. Bohra, Polyhedron 11 (1992) 1551.
[20] V.K. Jain, R.P. Patel, K.V. Muralidharan, R. Bohra, Polyhedron 8 (1989) 2151.
[21] V.K. Jain, S. Kannan, R.J.Butcher, J.P. Jasinski, J. Chem Res S (1996) 284.
[22] V.K. Jain, S. Kannan, R.J.Butcher, J.P. Jasinski, Unpublished results, X-ray structure of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mu-\mathrm{Cl})(\mu-\mathrm{SeEt})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$.
[23] E.M. Padilla, J.A. Golen, P.N. Richmann, C.M. Jensen, Polyhedron 10 (1991) 1343.
[24] M.C. Hall, J.A.J. Jarvis, B.T. Kilbourn, P.G. Owston, J. Chem. Soc. Dalton Trans. (1972) 1544.
[25] P.H. Bird, U. Siriwardane, R.D. Lai, A. Shaver, Can. J. Chem. 60 (1982) 2075.
[26] C.E. Briant, C.J. Gardner, T.S.A. Hor, N.D. Howells, D.M.P. Mingos, J. Chem Soc. Dalton Trans. (1984) 2645.
[27] E.G. Hope, W. Levason, M. Webster, S.G. Murray, J. Chem. Soc. Dalton Trans. (1986) 1003.
[28] E.G. Hope, H.C. Jewiss, W. Levason, M. Webster, J. Chem. Soc. Dalton Trans. (1986) 1479.
[29] V.W. Day, D.A. Lesch, T.B. Rauchfuss, J. Am. Chem. Soc. 104 (1982) 1290.
[30] T.G. Appleton, M.A. Bennett, I.B. Tomkins, J. Chem. Soc. Dalton Trans. (1976) 439.
[31] G.K. Anderson, J.A. Davis, D.J. Schoeck, Inorg. Chim. Acta 76 (1983) 251.
[32] R.J. Goodfellow, L.M. Venanzi, J. Chem. Soc. (1965) 7533. A.C. Smithies, M. Rycheck, M. Orchin, J. Organomet. Chem. 12 (1968) 199
[33] H.C. Clark, A.B. Goel, V.K. Jain, K.G. Tyers, C.S. Wong, J. Organomet. Chem. 321 (1987) 123.
[34] A. Singhal, V.K. Jain, J. Chem. Soc. Dalton Trans. (1993) 1515.
[35] J.Q. Li, W.L. Bao, P. Lue, X.J. Zhou, Synth. Commun. 21 (1991) 799.
[36] G.M. Sheldrick, SHELXs-86, Program for Crystal Structure Determination, University of Göttingen, 1986.
[37] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure refinement, University of Göttingen, 1997.

[^0]: * Corresponding author. Tel.: + 91-22-550-5148; fax: + 91-22-550 5151.

 E-mail address: jainvk@apsara.barc.ernet.in (V.K. Jain).

[^1]: ${ }^{\text {a }} \mathrm{N}$: found 3.1 ; calcd. 3.3%.
 ${ }^{\mathrm{b}} \mathrm{N}$: found 2.9; calcd. 2.7%.

